Florence Bockting Computational Statistics TU Dortmund University

PREDICTIVE PRIOR ELICITATION

Lund, 26.08.2025

State of the Art & Current Challenges

Setting the starting point

data distribution

$$p(\theta \mid y) \propto p(y,\theta) = p(y \mid \theta) p(\theta \mid \lambda)$$

data model prior distribution

Setting the starting point

$$p(\theta \mid y) \propto p(y,\theta) = p(y \mid \theta) p(\theta \mid \lambda)$$

Non-informative, diffuse priors

• maximize the use of information derived from the data distribution

Setting the starting point

$$p(\theta \mid y) \propto p(y,\theta) = p(y \mid \theta) p(\theta \mid \lambda)$$

Non-informative, diffuse priors

• **maximize** the use of **information** derived from the **data** distribution

Informative priors

• substantial **problem-specific knowledge**, ideally capturing all relevant information available before observing the data

Setting the starting point

$$p(\theta \mid y) \propto p(y, \theta) = p(y \mid \theta) p(\theta \mid \lambda)$$

Non-informative, diffuse priors

• **maximize** the use of **information** derived from the **data** distribution

Informative priors

• substantial **problem-specific knowledge**, ideally capturing all relevant information available before observing the data

Weakly informative priors

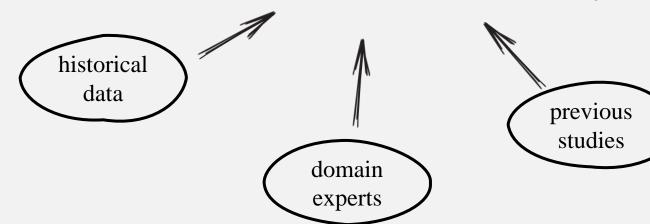
• **general domain knowledge** applicable across a broad class of problems

Setting the starting point

$$p(\theta \mid y) \propto p(y, \theta) = p(y \mid \theta) p(\theta \mid \lambda)$$

Informative priors

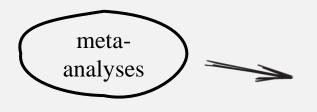
• substantial **problem-specific knowledge**, ideally capturing all relevant information available before observing the data



Setting the starting point

Expert Prior Elicitation (EPE)

$$p(\theta \mid y) \propto p(y, \theta) = p(y \mid \theta) p(\theta \mid \lambda)$$



Informative priors

• substantial **problem-specific knowledge**, ideally capturing all relevant information available before observing the data

What it is and why we need it

• structured process for **translating** an **individual's knowledge** and beliefs about one or more uncertain quantities **into a (joint) probability distribution**

What it is and why we need it

• structured process for **translating** an **individual's knowledge** and beliefs about one or more uncertain quantities **into a (joint) probability distribution**

• stages in an **expert prior elicitation process** according to Garthwaite et al. (2005)

What it is and why we need it

- ✓ selection of experts
- ✓ data model (data distribution + prior)
- ✓ target quantities (,,What")
- ✓ elicitation techniques ("How")

What it is and why we need it

- ✓ selection of experts
- ✓ data model (data distribution + prior)
- ✓ target quantities (,,What")
- ✓ elicitation techniques ("How")

- ✓ elicitation protocol
- ✓ training of experts
- ✓ questionnaire, interview
- ✓ on-site, online

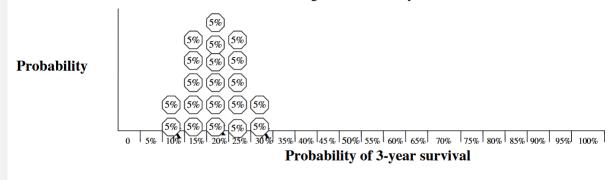
What it is and why we need it

1. For an average group of newly diagnosed SSc-PAH patients **not treated** with warfarin, what is the probability of being alive at 3 years? Place an X in the interval to indicate the probability of 3-year survival.



2. For an average group of newly diagnosed SSc-PAH patients **treated** with warfarin, what is the probability of being alive at 3 years?

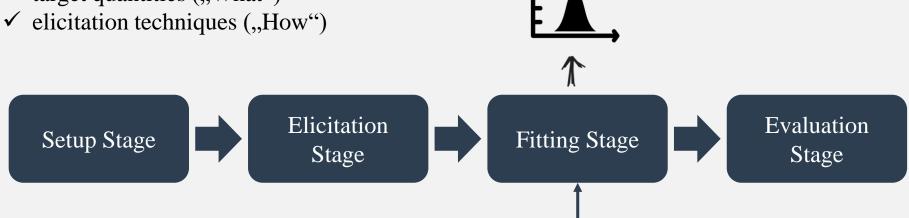
4. You have been given 20 stickers. Each sticker represents 5% probability. Placing the stickers in the intervals, indicate the weight of belief for your survival estimates.



Please review the shape and distribution of your answer. Does this reflect what you truly believe? If not, please feel free to revise the placement of stickers.

What it is and why we need it

- ✓ selection of experts
- ✓ data model (data distribution + prior)
- ✓ target quantities (,,What")



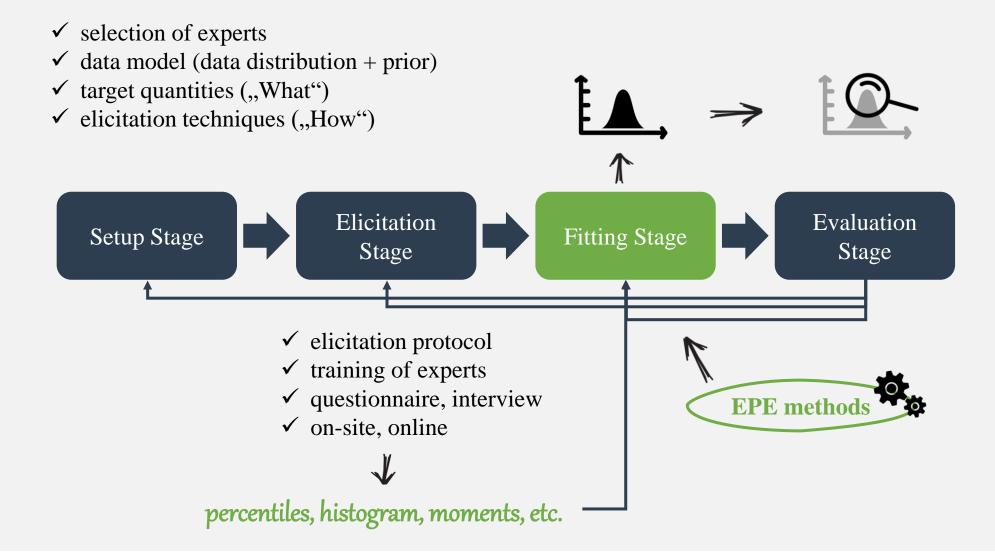
- ✓ elicitation protocol
- ✓ training of experts
- ✓ questionnaire, interview
- ✓ on-site, online

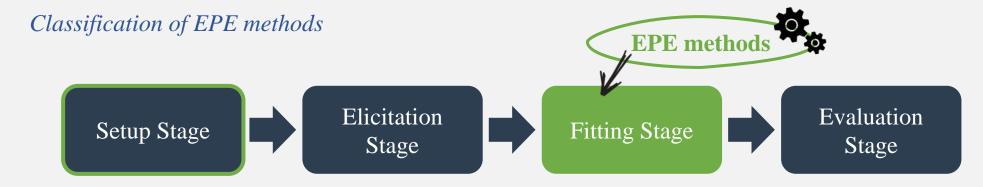
percentiles, histogram, moments, etc.

What it is and why we need it

✓ selection of experts ✓ data model (data distribution + prior) ✓ target quantities (,,What") ✓ elicitation techniques ("How") Elicitation Evaluation Fitting Stage Setup Stage Stage Stage ✓ elicitation protocol ✓ training of experts ✓ questionnaire, interview ✓ on-site, online percentiles, histogram, moments, etc.

What it is and why we need it



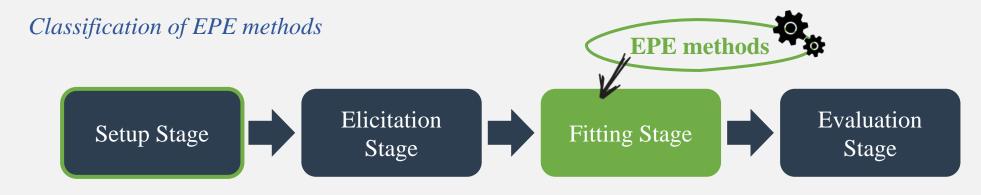


configurations in setup stage

characterization of an EPE method

✓ data model (data distribution + prior)

model-specific vs. model-agnostic parametric vs. non-parametric independent vs. joint

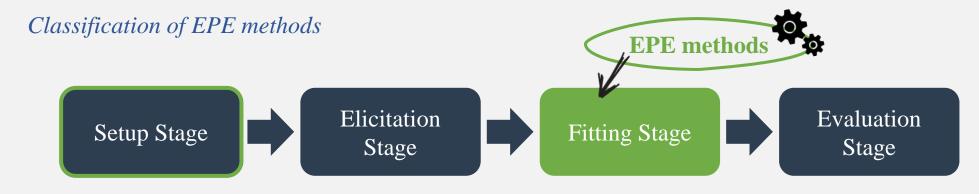


configurations in setup stage

characterization of an EPE method

model-specific vs. model-agnostic

✓ data model (data distribution + prior)
 ✓ target quantities ("What")
 ✓ structural vs. predictive vs. hybrid



configurations in setup stage

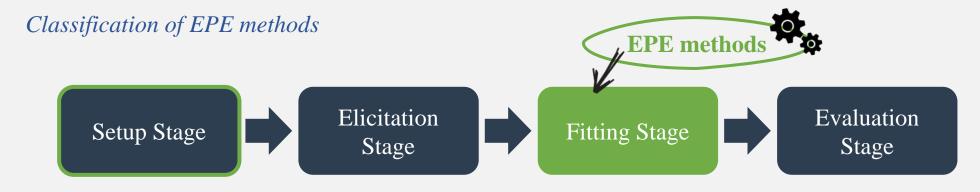
characterization of an EPE method

model-specific vs. model-agnostic parametric vs. non-parametric independent vs. joint

✓ target quantities ("What")

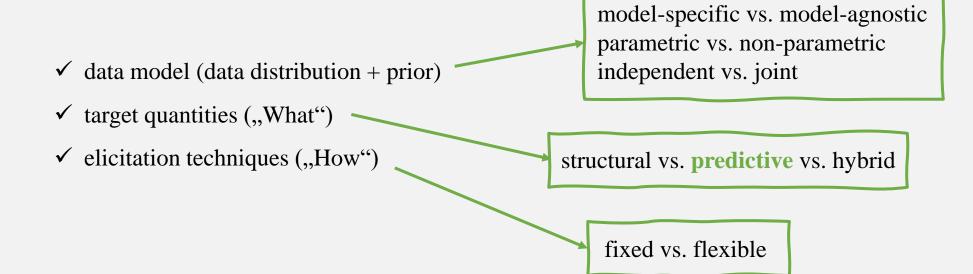
✓ elicitation techniques ("How")

structural vs. predictive vs. hybrid



configurations in setup stage

characterization of an EPE method



The promise and the difficulty

✓ most predictive EPE methods are *model-specific*

Author	Model	Prior	Hypercube D3
Kadane et al. (1980)	NLR	NCP	0
Oman (1985)	NLR	NCP	0
Garthwaite and Dickey (1988)	NLR	NCP	0
Ibrahim and Laud (1994)	NLR	NCP	0
Bedrick et al. (1996)	GLM	CMP	0
Chen and Ibrahim (2003)	GLM	CP	0
Denham and Mengersen (2007)	GLM	NCP	Н
Elfadaly and Garthwaite (2011)	NLR	NCP	0
Garthwaite et al. (2013)	PW-GLM	NCP	0
Elfadaly and Garthwaite (2015)	Gam-GLM	NCP/log-normal	0
Garthwaite and Dickey (1992)	NLR	mixture-NCP	Н
Laud and Ibrahim (1995)	NLR	NCP	0
Chen et al. (1999)	LR	custom	0
Leamer (1992)	NLR	NCP	P
Hosack et al. (2017)	GLM	NCP	0
Carlin et al. (1992)	RE-LR	custom	P
Al-Hamzawi et al. (2011)	RE-BQR	power prior	P
Garthwaite and Al-Awadhi (2006)	PW-LR	NCP	0
Kadane et al. (1996)	AR	PW-CP	0
Garthwaite and Dickey (1991)	NLR	NCP	0
Chaloner et al. (1993)	PHR	adjusted-NCP	0
Ibrahim et al. (1999)	PHR	semi-parametric	0
Soare et al. (2016)	NLR	delta	P
Micallef et al. (2017)	NLR	half-normal	P
A.C. 1 . 1 1 (0015)	MIL D	MOD	^

taken from Mikkola et al. (2024)

The promise and the difficulty

- ✓ most predictive EPE methods are *model-specific*
- ✓ only recently several *model-agnostic* methods have been proposed, e.g.
 - Hartmann and Agiashvili [2020]. Manderson and Goudie [2024], da Silva et al. [2023], Bockting et al. [2024]
 - However, focus on simple, parametric prior distributions
- ✓ further work in predictive EPE focussing on more complex prior distributions include
 - Gaussian processes [Oakley and O'Hagan, 2007]
 - Quantile-parametrized distributions [Perepolkin et al., 2024]
 - Normalizing Flows with preferential judgments [Mikkola et al., 2024]
 - Extension of simulation-based EPE method [Bockting et al., 2025]

Why is the development of predictive EPE methods so challenging?

The promise and the difficulty

- ✓ selection of experts
- ✓ data model (data distribution + prior)
- ✓ target quantities ("What")
- ✓ elicitation techniques ("How")

- ✓ Interpretability
 ✓ Informativeness

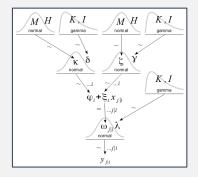
The promise and the difficulty

- ✓ selection of experts
- ✓ data model (data distribution + prior)
- ✓ target quantities ("What")
- ✓ elicitation techniques ("How")

- ✓ Interpretability✓ Informativeness

Interpretability

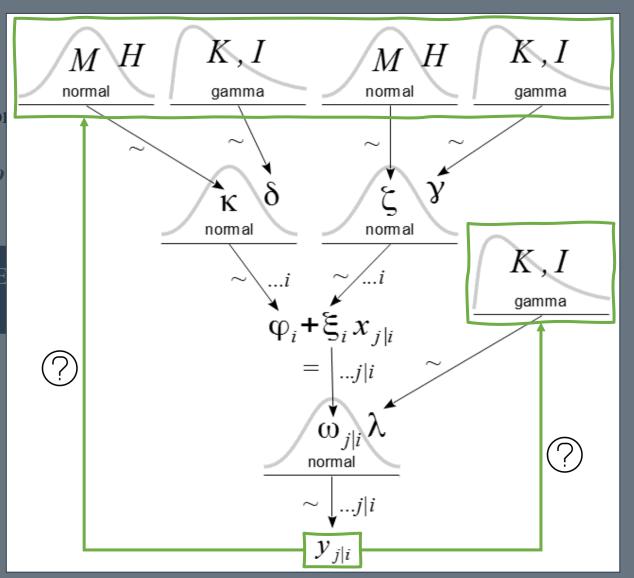
Informativeness



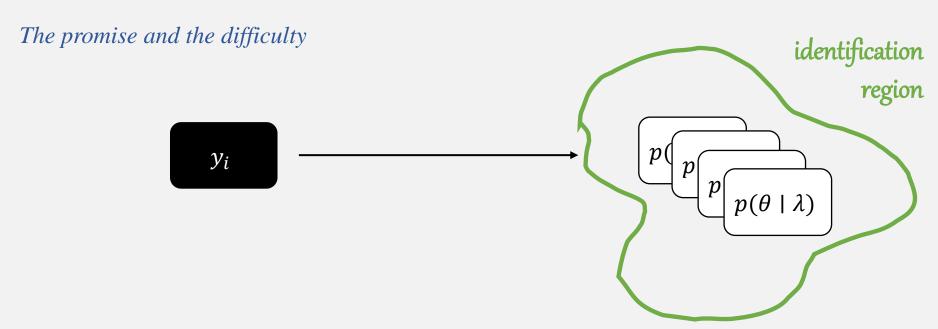
The promise and the difficulty

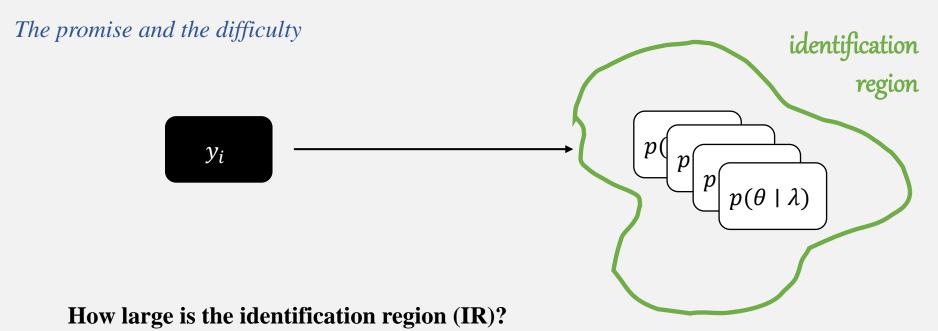
- ✓ selection of experts
- ✓ data model (data distribution
- ✓ target quantities ("What")
- ✓ elicitation techniques ("Ho

Interpretability



taken from Kruschke (2014)





- Naive approach: Sample from IR
- Principled approach: Prior on $p(\lambda)$ and compute posterior $p(\lambda \mid \theta)$

How can we reasonably constrain the identification region?

- Adjust prior $p(\lambda)$ (if exists)
- Adjust set of target quantities/elicitation techniques
- Add regularization term to the loss function

The promise and the difficulty

DESIDERATA – EPE METHODS

What we should aim for and where we are

- ✓ D-M1 accommodates a **flexible definition of target quantities**, supporting quantities defined in both the parameter space and the observable space.
- ✓ D-M2 accommodates a **flexible range of elicitation techniques**, such as moments, quantiles, and distributions.
- ✓ D-M3 is **agnostic** to the **model** formulation

DESIDERATA – EPE METHODS

What we should aim for and where we are

- ✓ D-M4 **propagates total uncertainty** from the elicitation process into the resulting prior distributions.
- ✓ D-M5 always returns a **learned prior** distribution, regardless of how **limited** the input **information** is.
- ✓ D-M6 **detects incoherent input information**, reconciling incoherence where possible or providing feedback on the incoherence.
- ✓ D-M7 returns the same set of learned priors when fitted to the same set of expertelicited summaries, ensuring reproducibility

DESIDERATA – EPE WORKFLOW

The need to understand EPE methods in a broader context

- ✓ D-W1 **integrate** EPE methods within **EPE protocols**
- ✓ D-W2 **general evaluation framework** (standard set of diagnostics, evaluation metrics, ...)
- ✓ D-W3 benchmark data sets; standardized comparison between EPE methods
- ✓ D-W4 **case studies** showcasing the use of EPE methods in **real-world situations** to challenge it with complexity of reality
- ✓ D-W5 **robustness analysis**, i.e., quantifying consequences of selecting specific prior for subsequent Bayesian inference task (change of posterior)

THE NEED FOR SOFTWARE

Great methods fail if no one can use them

- ✓ D-S1 interfaces compatible with expert-friendly elicitation tools accommodating different response formats.
- ✓ D-S2 **integrates into an elicitation protocol**, allowing immediate fitting of prior distributions to elicited summaries, delivery of informative visual feedback and diagnostics, ...
- ✓ D-S3 modular, open-source, and version-controlled, facilitating community-driven development, easy modification, integration of extensions, and transparency.

THE NEED FOR SOFTWARE

Great methods fail if no one can use them

- ✓ D-S4 **integrated into the broader Bayesian workflow**, ensuring seamless exchange of information between the EPE and Bayesian workflows
- ✓ D-S5 compatible with different probabilistic programming languages.
- ✓ D-S6 facilitator-friendly, providing an intuitive interface, comprehensive documentation, tutorials, and case studies.
- ✓ D-S7 standard set of **evaluation metrics**, **diagnostics**, and **visualization** tools.

THANK YOU

Florence Bockting

https://github.com/florence-bockting

☑ florence.bockting@tu-dortmund.de

https://florence-bockting.github.io/