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prior specification

Non-informative, diffuse priors Informative priors
• maximize the use of information

derived from the data distribution

• substantial problem-specific knowledge, 

ideally capturing all relevant information 

available before observing the data 

Weakly informative priors
• general domain knowledge applicable 

across a broad class of problems
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Expert Prior Elicitation (EPE)
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• structured process for translating an individual’s knowledge and beliefs 

about one or more uncertain quantities into a (joint) probability distribution
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• structured process for translating an individual’s knowledge and beliefs 

about one or more uncertain quantities into a (joint) probability distribution

Setup 

Stage

Elicitation

Stage

Fitting 

Stage

Evaluation 

Stage

• stages in an expert prior elicitation process according to Garthwaite et al. (2005)
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✓ target quantities („What“)

✓ elicitation techniques („How“)
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✓ most predictive EPE methods are model-specific

taken from

Mikkola et al. (2024)
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✓ most predictive EPE methods are model-specific

✓ only recently several model-agnostic methods have been proposed, e.g.

• Hartmann and Agiashvili [2020]. Manderson and Goudie [2024], da Silva et al. 

[2023], Bockting et al. [2024]

• However, focus on simple, parametric prior distributions

✓ further work in predictive EPE focussing on more complex prior distributions include

• Gaussian processes [Oakley and O’Hagan, 2007]

• Quantile-parametrized distributions [Perepolkin et al., 2024]

• Normalizing Flows with preferential judgments [Mikkola et al., 2024]

• Extension of simulation-based EPE method [Bockting et al., 2025]

Why is the development of predictive EPE methods so challenging?
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taken from 

Kruschke (2014)
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𝑦𝑖 𝑝(𝜃 ∣ 𝜆)
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𝑦𝑖 𝑝(𝜃 ∣ 𝜆)
𝑝(𝜃 ∣ 𝜆)

𝑝(𝜃 ∣ 𝜆)
𝑝(𝜃 ∣ 𝜆)

identification
region

How large is the identification region (IR)?

• Naive approach: Sample from IR

• Principled approach: Prior on 𝑝 𝜆 and compute posterior 𝑝(𝜆 ∣ 𝜃)

How can we reasonably constrain the identification region?

• Adjust prior 𝑝 𝜆 (if exists)

• Adjust set of target quantities/elicitation techniques

• Add regularization term to the loss function
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EPE method
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✓ D-M1 accommodates a flexible definition of target quantities, supporting quantities 

defined in both the parameter space and the observable space.

✓ D-M2 accommodates a flexible range of elicitation techniques, such as moments, 

quantiles, and distributions.

✓ D-M3 is agnostic to the model formulation
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✓ D-M4 propagates total uncertainty from the elicitation process into the resulting 

prior distributions.

✓ D-M5 always returns a learned prior distribution, regardless of how limited the 

input information is.

✓ D-M6 detects incoherent input information, reconciling incoherence where 

possible or providing feedback on the incoherence.

✓ D-M7 returns the same set of learned priors when fitted to the same set of expert-

elicited summaries, ensuring reproducibility
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✓ D-W1 integrate EPE methods within EPE protocols

✓ D-W2 general evaluation framework (standard set of diagnostics, evaluation 

metrics, …)

✓ D-W3 benchmark data sets; standardized comparison between EPE methods

✓ D-W4 case studies showcasing the use of EPE methods in real-world situations to 

challenge it with complexity of reality

✓ D-W5 robustness analysis, i.e., quantifying consequences of selecting specific prior 

for subsequent Bayesian inference task (change of posterior)
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✓ D-S1 interfaces compatible with expert-friendly elicitation tools accommodating 

different response formats.

✓ D-S2 integrates into an elicitation protocol, allowing immediate fitting of prior 

distributions to elicited summaries, delivery of informative visual feedback and 

diagnostics, …

✓ D-S3 modular, open-source, and version-controlled, facilitating community-driven 

development, easy modification, integration of extensions, and transparency.
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✓ D-S4 integrated into the broader Bayesian workflow, ensuring seamless exchange 

of information between the EPE and Bayesian workflows

✓ D-S5 compatible with different probabilistic programming languages.

✓ D-S6 facilitator-friendly, providing an intuitive interface, comprehensive 

documentation, tutorials, and case studies. 

✓ D-S7 standard set of evaluation metrics, diagnostics, and visualization tools.
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